Self-Locking Optoelectronic Tweezers for Single-Cell and Microparticle Manipulation across a Large Area in High Conductivity Media

نویسندگان

  • Yajia Yang
  • Yufei Mao
  • Kyeong-Sik Shin
  • Chi On Chui
  • Pei-Yu Chiou
چکیده

Optoelectronic tweezers (OET) has advanced within the past decade to become a promising tool for cell and microparticle manipulation. Its incompatibility with high conductivity media and limited throughput remain two major technical challenges. Here a novel manipulation concept and corresponding platform called Self-Locking Optoelectronic Tweezers (SLOT) are proposed and demonstrated to tackle these challenges concurrently. The SLOT platform comprises a periodic array of optically tunable phototransistor traps above which randomly dispersed single cells and microparticles are self-aligned to and retained without light illumination. Light beam illumination on a phototransistor turns off the trap and releases the trapped cell, which is then transported downstream via a background flow. The cell trapping and releasing functions in SLOT are decoupled, which is a unique feature that enables SLOT's stepper-mode function to overcome the small field-of-view issue that all prior OET technologies encountered in manipulation with single-cell resolution across a large area. Massively parallel trapping of more than 100,000 microparticles has been demonstrated in high conductivity media. Even larger scale trapping and manipulation can be achieved by linearly scaling up the number of phototransistors and device area. Cells after manipulation on the SLOT platform maintain high cell viability and normal multi-day divisibility.

منابع مشابه

Dynamic manipulation and patterning of microparticles and cells by using TiOPc-based optoelectronic dielectrophoresis.

We develop light-driven optoelectronic tweezers based on the organic photoconductive material titanium oxide phthalocyanine. These tweezers function based on negative dielectrophoresis (nDEP). The dynamic manipulation of a single microparticle and cell patterning are demonstrated by using this light-driven optoelectronic DEP chip. The adaptive light patterns that drive the optoelectronic DEP on...

متن کامل

Phototransistor-based optoelectronic tweezers for dynamic cell manipulation in cell culture media.

Optoelectronic tweezers (OET), based on light-induced dielectrophoresis, has been shown as a versatile tool for parallel manipulation of micro-particles and cells (P. Y. Chiou, A. T. Ohta and M. C. Wu, Nature, 2005, 436, 370-372). However, the conventional OET device cannot operate in cell culture media or other high-conductivity physiological buffers due to the limited photoconductivity of amo...

متن کامل

Manipulation of Self-Assembled Microparticle Chains by Electroosmotic Flow Assisted Electrorotation in an Optoelectronic Device

A method incorporating the optically induced electrorotation (OER) and alternating current electroosmotic (ACEO) effects, for the formation and motion control of microparticle chains, is numerically and experimentally demonstrated. In this method, both the rotating electric field and ACEO fluid roll are generated around the border between light and dark area of the fluidic chamber in an optoele...

متن کامل

Interactive manipulation of blood cells using a lens-integrated liquid crystal display based optoelectronic tweezers system.

This paper reports a lens-integrated liquid crystal display (LCD)-based optoelectronic tweezers (OET) system for interactive manipulation of polystyrene microspheres and blood cells by optically induced dielectrophoretic force. When a dynamic image pattern is projected into a specific area of a photoconductive layer in an OET, virtual electrodes are generated by spatially resolved illumination ...

متن کامل

Optoelectronic Tweezers – Optical Manipulation using LEDs and Spatial Light Modulators

1. Introduction Optical manipulation of biological cells in microfluidic devices is a powerful technique for high-throughput cell-based assays. It offers several advantages compared with other techniques: it is non-invasive, contamination free , and needs no or minimum fabrication for the mi-crofluidic devices. The most well-known optical manipulation tool is optical tweezers [1, 2]. To achieve...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

متن کامل
عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016